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Abstract—There has been considerable progress in the con-
struction of fundamental bandwidth limits and near optimal
design realisations for several classes of passive linear electromag-
netic wave devices, most notably for radar absorbent materials,
antennas and meta-materials. This article seeks to place balun
design on a similar footing, for an important class of baluns;
in particular those which are ‘perfect’ and do not contain
magnetically coupled transformers. For this class of baluns, the
equivalent circuit is always characterised by a shunt impedance at
the output of the device which is inductive in the low frequency
limit. Consequently they are governed by one of the Fano [9]
limits on bandwidth. The Fano integrated measure of bandwidth
is proportional to the shunt inductance and is maximised when
the reflection coefficient, at the balanced output port, is minimum
reflection phase. Although, in theory, a minimum reflection phase
high pass matching network can be shown to provide infinite
fractional bandwidth in practice it is not possible to construct
such a network at microwave frequencies because the shunt
impedance is not purely inductive. At microwave frequencies the
shunt impedance is usually realised as a shorted transmission-line
section with non-negligible length. This may be approximated by
a shunt inductance in parallel with a shunt capacitance over
the principal operating range of the balun. This leads to a
band-pass characteristic and the shunt capacitance gives rise to
a second Fano bandwidth measure. It is shown that the use
of both measures leads to the characteristic impedance of the
transmission line, together with the balanced load impedance,
determining the ultimate performance of the balun. This ultimate
performance is also achieved if the reflection coefficient, looking
from the balanced load into the balun, is minimum reflection
phase. Suitable minimum reflection phase designs can be realised
using Fano-Rhodes band-pass networks and these equivalent
circuits can be compared with realistic designs. An example of
such a design is presented for use over 2-18 GHz.

Index Terms—microwave, baluns, filters, bandwidth

I. I NTRODUCTION

Baluns are important components of many microwave an-
tenna systems, required in order to produce symmetric an-
tenna patterns which remain symmetric over the operational
frequency range of the antenna. As the requirement grows for
antennas of larger and larger bandwidth it becomes important
to seek any fundamental limits on baluns that may exist.

There has been considerable progress in establishing band-
width performance bounds on radar absorbers [1], [2], [11],
antennas [3], [4] and metamaterials [5], [6] since the seminal
work of Fano [9], [10]. These types of performance bounds
are characteristic of other passive structures, includingcertain
kinds of baluns and it is the aim here to consider such
baluns in this context. Munk [7] catalogued baluns, for antenna

applications, according to a system employed by Nelson and
Stravis [8]. The ‘type 1’ or ‘bazooka’ balun and the ‘type
2’ and ‘type 3’ balanced output baluns. This class system
serves to provide a useful basis for discussion and is one which
we also employ here. However, for our purposes, it is more
important to distinguish between baluns which provide perfect
balance over the entire frequency range, but which are usable
only over a finite band due to limitations on the return loss, and
those baluns which are perfectly balanced only over a limited
frequency range (neighborhoods of isolated frequencies) but
which present no frequency limitations on return loss. We
will designate these as ‘perfect baluns’ and ‘imperfect baluns’,
respectively.

Baluns may be regarded as three terminal devices, where the
input terminal is a standard uni-modal waveguide port and
the two output terminals support two modes between them.
The output terminals may or may not be explicitly referenced
to a common ground. If a well defined common ground
exists then the two output modes may be designated even
and odd modes with well defined characteristic impedances.
If a common ground is not well defined, the return-path
currents depend on external geometry and support structure
and then the even mode characteristic impedance depends on
this support structure. The job of the balun is to reduce the
unbalanced even mode to acceptable levels. A perfect balan is
one for which there is no even mode present at any frequency
or, equivalently, one where each output port is phased at±90
degrees with respect to ground.

Imperfect baluns include the type 1 bazooka balun, the cut-
away balun [7], featuring a slowly transitioning coax cable, the
tapered microstrip-to-balanced strip-line and the CPWFGP-
CPS implementation of the double-Y balun [15]. These baluns
are not balanced at all frequencies and become balanced only
when there is a frequency dependent cancellation of the even-
order mode or where the even order mode exists at a low
level, small due to the relative difference in characteristic
impedances of the two modes and the electrical distance in
wavelengths over which this difference exists.

The type 2 and type 3 baluns are perfect baluns for which
there is no even order mode at any frequency. Other examples
include the Marchand balun and the slot line implementations
of the double-Y balun [15]. The ideal balanced transformer,
employing magnetic field coupling between the primary and
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secondary windings, is another example of a perfect balun.
The ideal magnetically coupled transformer is a canonical
device whose physical implementation at high frequency is
limited by materials science rather than any requirements of
causality as described by Fano. At microwave frequencies
limitations are set by the finite electrical conductivity of
the component metals, the unavailability of low loss high
permeability materials and the sub-wavelength scales involved.
Currently, upper operational frequencies are limited to a few
GHz so such transformers cannot be used for many microwave
applications.

As stated in [7] bandwidth limitations are set by the shunt
impedance that exists for type 2 and type 3 baluns. This
shunt impedance is inductive in the low frequency limit and
is probably characteristic of all transformerless perfectbaluns,
though we are not aware of a proof of this. The two ‘bal-
anced’ output terminals must be electrically symmetric under
exchange of terminal position. Without a balanced transformer,
all known examples of a perfect balun feature an unbroken
conducting path between the two ports in order to permit
balanced excitation by the input port. This unbroken path
is a consequence of the requirement to ‘shield’ the currents
excited by the input port from any even order modes that
might be excited. For example, the type 2 and type 3 baluns
in [7], feature an inner conductor connected to the input port
which lies within a coax cable whose outer shielding forms
an unbroken run between the two balanced output terminals.

Under the assumption that the shunt impedance between the
balanced ports is inductive in the low frequency limit, one of
the Fano bandwidth limits applies and provides a well defined
bandwidth constraint. However, the shunt impedance has other
generic characteristics at microwave frequencies and is better
approximated by a short-circuited length of transmission line
of non-zero electrical length. This leads to a band-pass model
with the shunt impedance represented by a parallel inductance
and capacitance. This leads in turn to a second Fano constraint
which while approximate (unlike the first) serves to providea
more realistic bandwidth measure.

II. EQUIVALENT CIRCUIT FOR A GENERAL

TRANSFORMERLESS PERFECT BALUN

A desirable characteristic of a balun is that it should
be lossless, so that its equivalent circuit should feature a
resistance only in the expression of the balun load excited
by the balanced, odd mode, output. For antenna applications
this is usually the radiation resistance. Although the balun
is a 3-port device, the perfect balun may be regarded as
a 1-port device whose input is the unbalanced port from a
source of characteristic impedanceZ0, or a nearly lossless two
port device whose input is a characteristic impedanceZ0 and
whose output is connected to a balanced mode loadRL. For a
perfect balun with no magnetically coupled transformers, the
equivalent circuit is shown below. This is represented in terms
of a matching networkN ′′ connected to a reactive shuntN ′.
In first order representation,N ′ is represented by an inductor
L whose output represents the balanced output of the balun

into the load resistorRL. For the present we will assume that
any transmission line realisation of the inductor is electrically
small so that no shunt capacitance is required inN ′. The
networkN ′′ should be as close to loss-less as is practically
feasible. The reflection coefficient looking from source into
the loadRL is Γ(ω) at angular frequencyω. The backwards
reflection coefficient looking from the load into the source,
represented by a source load resistorZ0, is ρ1. The notation,
for the most part, follows the conventions of Fano [9], who
first presented the bandwidth theory of structures of this sort.
In all that follows, a harmonic time convention is employed
with time dependenceejωt.

LZ 0 R Lρ 1

N Nport
input unbalanced balanced output

port

essential shunt
inductance for
perfect balun

matching
network

Γ

Fig. 1. First order equivalent circuit of a perfect transformerless balun

The integrated bandwidth of the balun may be defined in terms
of its return loss expressed in dB weighted by the inverse
square of the frequency. Network theory may be employed
to produce optimal designs, with theory drawn from an early
unpublished report [12] originally intended for application to
radar absorbers containing frequency selective surfaces.Much
of the theory is common since we are dealing with maximum
bandwidth issues of passive realisable structures ([2], [3], etc.).

In order to express a measure of performance we introduce the
coefficient,Bp, 0 < Bp ≤ 1 where the maximum theoretical
integrated bandwidth is achieved whenBp = 1, the conditions
for which are set out below. Let the integrated bandwidth
measure,Ibw, be defined by,

Ibw = −
∫

∞

0

Γdb(ω)

ω2
dω (1)

whereΓdb(ω) is the return loss seen at the unbalanced input
port, expressed in dB as a function of angular frequencyω.
Then the Bode-Fano inequality may be written as an equality,

Ibw = 20log10(e)Bp

πL

RL

(2)

whereL is the shunt inductance described above andRL is
the load resistance and20log10(e) ≈ 8.686.

A set of necessary and sufficient conditions forBp = 1 may
be obtained from the original Fano theory [9] as illustratedin
the appendix. In summary,

1. The networkN ′′ should be lossless.
2. The networkN ′′ should not feature a shunt inductance

at its output terminals.
3. The reflection coefficientρ1(ω), looking from the load

to the source, should be minimum phase, after any all-
pass filter (if one exists) has been removed.
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If the network is lossy then equation (2) is not valid and
Γ(ω) must be replaced byρ1(ω). Conditions (1) is required
in order that|Γ(ω)| = |ρ1(ω)| (in the original Fano paper [9]
the analysis is conducted in terms ofρ1). If the networkN ′′

contains a shunt inductor of valueL′′ at its output terminals
then the equivalent circuit is degenerate andL in (2) must
be replaced byL → 1/(1/L + 1/L′′). The minimum phase
condition is the major theoretical requirement that this paper
addresses. The requirement of removal of an all-pass filter
is not strictly necessary since if an all-pass filter is placed
between N ′ and RL then the shunt inductance looking
from load to source is increased while the magnitude of
the reflection coefficient|ρ1(ω)| remains unchanged. By
definition the structure is non-minimum phase andBp < 1.
However, it is convenient to defineL independent of any
all-pass phase delay betweenN ′ and RL since this is the
assumption made when designing minimum phase filters.
Hence the inclusion in condition (3).

It is very relevant that the reverse network looking from the
load into the source is the same as that representing a radar
absorbing material (RAM) [1], [2], [11], [12], so much of
the theory developed for such applications can be applied to
the balun problem. In the RAM problem the load resistor
represents the impedance of free space from which a plane
wave impinges on to the lossy surface. Here, the inductance
L is proportional to the thickness of the absorber and to the
relative permeability at zero frequency. For a radar absorber,
it is often more convenient to representN ′′ as lossy (rather
than featuring all the loss by the single elementZ0). Since
we requireΓ to be replaced byρ1 in (2), this is not an issue.

The maximum integrated bandwidth is dependent only on
the load impedanceRL and the value ofL. If a transformer
is availableRL can be transformed to an arbitrary value in
which case there is no limit to the integrated bandwidth of
the balun. Whilst balanced transformers are often unavailable,
unbalanced ones can be readily fabricated (e.g. using tapered
or stepped impedance transmission lines).

The integrated bandwidthIbw is weighted heavily by
the functional form of the reflection coefficient near zero
frequency. This has some interesting implications. For
example, if there is no matching network and the equivalent
circuit is simply the inductanceL in parallel with the
resistanceRL, thenIbw may be easily evaluated. In this case,

ρ1(ω) =
jωL(Z0 −RL)−RLZ0

jωL(Z0 +RL) +RLZ0
(3)

and
∫

∞

0

1

ω2
loge

(

1

|ρ1(ω)|

)

=

{

πL/Z0 for Z0 ≥ RL

πL/RL for Z0 ≤ RL
(4)

We can replaceρ1 by Γ and employ (2). In this caseIbw is
maximised whenRL = Z0 and Bp = 1 for RL ≥ Z0 and
Bp = RL/Z0 for RL ≤ Z0.

In the RAM context [1],[12], which starts with the reverse
network with a source impedanceZ0 that of free space,

equation (2) is written differently in the form,

Ibw = 20 log10(e)Br

πL

Z0
(5)

In this case,Br = 1 for RL ≤ Z0 and Br = Z0/RL for
RL ≥ Z0. Both forms are equivalent.

Clearly, even whenBp = 1, most of the integral is “wasted”
with a reflection coefficient that is not usefully small away
from zero frequency. What is required is a network which gives
a good shape to the reflection coefficient (e.g. a rectangular
distribution) whilst simultaneously keepingBp ≈ 1 for min-
imum reflection phase. Suppose, for example, the reflection
coefficient can be engineered to be of step form,

Γdb(ω) =

{

0 for ω < ω0

−RdB for ω > ω0
(6)

then,

Ibw =
RdB

ω0
(7)

showing that an infinite bandwidth balun is theoretically
possible provided that the ratioRdB/ω0 remains a constant set
by (2) and provided that a high pass network is realisable. The
fact it is not realisable is a consequence of other properties of
the shunt impedance inN ′ which, above, is represented only
by a single inductor.

In order to determine minimum phase requirements it is
necessary to study the poles and zeros of the input impedance
Zb(ω) associated with the reflection coefficientρ1(ω) looking
from load to source. Reversing the network representation in
figure 1, we consider a ladder network representation as shown
in figure 2. Here the elementZ1 represents the first shunt
impedance andZ2 the first series impedance element of the
ladder. The input impedanceZb of the balun in the reverse

LR L

N N

Z 0

ρ 1

Z b

Z

Z

Z1

2

3

Z 2n

ladder network representation

Fig. 2. Ladder network reverse representation

direction may be represented by a rational function of the
Laplace transform variable,p = jω, such that

Zb(p) =
P (p)

Q(p)
(8)

for polynomial functionsP (p) and Q(p). Clearly, Zb must
be a realisable passive function which requires that the zeros
of P (p) and Q(p) lie in the left hand half plane. This is
well described in the standard literature (e.g. [13]). However,
this is not sufficient to ensure minimum phase. For minimum
phase we require that the polynomialP (p) − RLQ(p) is
Hurwitz stable. (Actually, this is not quite sufficient. It is also
required thatP (p) − RLQ(p) andP (p) + RLQ(p) share no
common zeros in the right hand half plane, but sinceP (p)
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and Q(p) have no zeros in the right hand half plane for a
passive network, this latter condition is assured for positive
RL.) The conditions for Hurwitz stability ofP (p)−RLQ(p)
may be found quite simply as a set of inequalities relating
the equivalent circuit parameters of the network for low order
networks containing inductors and capacitors. However, itis
not straightforward for arbitrary networks of high order.

III. I MPROVEMENTS TO THE MODEL AND FURTHER

BANDWIDTH CONSTRAINTS

The integrated bandwidth can only be changed by reducing
the load impedanceRL or increasing the shunt inductanceL.
However, methods to changeL usually have an effect on the
first elements,Z1 etc. of the ladder network so this must be
explicitly considered. At microwave frequencies it is essential
to consider the capacitive contribution. For example ifL is
made large by increasing the electrical length of the balun
thenZ1 becomes more capacitive at a given frequency when
the frequency is small. To increaseL without changing the
dimensions of the inductor requires the relative permeability
to be increased in which the structure is embedded since
in general L is proportional to the relative permeability,
assuming the relative permeability is independent of frequency.
Unfortunately, this option is not available at high microwave
frequencies where such magnetic materials are unavailable.
The use of dispersive and artificial magnetic meta-materials is
possible but the dispersion has an equivalent circuit represen-
tation which leads back to the previous formalism. Electrical
metamaterials, whose relative permeability is unity at zero
frequency, may permit a practical realisation of the network
equivalent circuit but cannot be employed to change the above
requirements.

In practice, L is realised by a structure which is better
approximated by a length of short circuited transmission line
with (possibly) some radiation loss. The radiation loss canbe
lumped in with the load resistanceRL and does not change
the model, but the properties of the transmission line must be
modelled at non-zero frequency. Since we are primarily inter-
ested in performance over a contiguous frequency band, the
next order equivalent circuit model of the shorted transmission
line may be represented as a capacitanceC in parallel with
L.

LZ 0 R Lρ 1

N Nport
input unbalanced balanced output

port

matching
network

Γ

higher order representation
of shunt impedance

C

Fig. 3. Higher order equivalent circuit of a perfect transformerless balun

The existence of a non-removable capacitance gives rise to a
second integrated bandwidth measureJbw,

Jbw = −
∫

∞

0

Γdb(ω)dω (9)

and a second Bode-Fano inequality. Just as before, the Bode-
Fano inequality may be written in the form,

Jbw = 20 log10(e)B
′

p

π

CRL

(10)

where0 < B′

p ≤ 1 andB′ = 1 if and only if

1′. The networkN ′′ is lossless.
2′. The networkN ′′ does not feature a shunt capacitance

at its output terminals. If it does, it should be lumped
in with C.

3′. The reflection coefficientρ1(ω), looking from the bal-
anced load to the source, is minimum phase, after any
all-pass filter (if one exists) has been removed.

These are the same conditions as before with condition (2)
replaced to feature degeneracy in capacitance rather than
inductance. The proof of this follows the same argument
as given in the appendix [10] with the logarithm of the
reflection coefficient expressed as a power series in1/p in
the high frequency limit with coefficientsA∞

i replacing the
coefficientsA0

i andA∞

1 =
∑

λ0i −
∑

λ∞i.

Equations (2) and (10) provide two simultaneous equations
which may be solved if the reflection coefficient assumes
a specific functional form. Suppose this is taken to be a
rectangular distribution such that,

loge(1/|ρ1(ω)|) =
−ΓdB(ω)

20 log10(e)
=







0 ω < ω1

h ω1 ≤ ω ≤ ω2

0 ω > ω2

(11)
for lower and upper angular frequenciesω1 < ω2, then

ω1 =
1

2





√

√

√

√

[

(

π

hRLC

)2

+
4

LC

]

− π

hRLC



 (12)

ω2 =
1

2





√

√

√

√

[

(

π

hRLC

)2

+
4

LC

]

+
π

hRLC





If we define the fractional bandwidth,

β =
ω2 − ω1√

ω2ω1
(13)

then the loss bandwidth product,

βh =
π

RL

√

L

C
(14)

A shorted transmission line has input impedanceZin =
Zc tanh(pT ). The low frequency limit may be used to define
the inductance, so that

L = ZcT (15)

whereZc is the characteristic impedance of the line andT =
d/c is the delay time whered is the line length andc is the
propagation speed in the medium. The capacitance C may be
determined from the resonant condition for whichZin → ∞
whenω = 1/

√
LC so that,

T =
π

2

√
LC (16)
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in which case, in the LC pass-band approximation,
√

L

C
≈ πZc

2
(17)

The expression (14) is exact when the shunt impedance is
represented by a parallel inductor and capacitor but only rep-
resents an approximation, with (17), for a shorted transmission
line. However, it clearly shows the importance of the charac-
teristic impedance in determining bandwidth performance.In
accurate assessment of performance of a given balun, it is best
only to employ theIbw integral measure since this makes no
reference to theLC approximation and makes no assumption
about the functional form of the reflection coefficient.

Since impedance transformation may be accomplished over
distances large compared to a wavelength using tapered trans-
mission lines, bothZ0 andRL can be made to take a wide
range of values. IfL or Zc is fixed we would like to reduce
RL leading to a network as illustrated in figure 4. Here, the
presence of a shunt capacitor is included in theZ1 component.
The auto-transformer symbol is used to show that a tapered
transmission line has a common ground and is not balanced.
It is not intended to imply magnetic coupling. For example,

R L1Z

2Z

Z 3

2n
Z

Z 0

L

input unbalanced
port

input 
impedance

N  and  N  combined

Fig. 4. Impedance transformation with a perfect balun

under this strategy for a type 2 or type 3 balun, the exterior
structure which definesL or Zc should remain fixed, but the
interior part of the balun which describes the balanced output
should be operated at low impedance and then transformed to
the necessary higher impedance to match the antenna load. In
practice the low operating impedance will be constrained by
dimensional tolerances and available materials. In addition, the
characteristic impedance of individual elements of the match-
ing network may be impossible to achieve without introducing
unacceptably large stray inductances and capacitances.

IV. REALISABLE MATCHING NETWORKS AND INCREASING

BANDWIDTH FOR FIXED Ibw
The other strategy to increase bandwidth is by control of

the matching network without increasing eitherL or reducing
RL. The matching network assumes the role of defining the
total required shunt capacitance. Viewed in this manner the
total shunt capacitance may not be realisable if, to achieve
the required inductance with a transmission line of given
characteristic impedance, the line capacitance is larger than
the shunt network capacitance.

As indicated in (7), at low frequencies it is theoretically pos-
sible to achieve near infinite bandwidth whilst still satisfying
the causality requirement (2). To do this, the two port network

comprisingZ1, Z2, ... Z2n, should ideally form a lossless
high-pass filter. Minimum phase high pass filters were first
designed by Fano [9], implemented as Tchebychev filters [14]
and considered for radar absorber applications in [12]. In such
networks the odd elementsZ1, Z3 etc. represent inductors (in
the case ofZ1, an infinite inductance)Zi = pL and the even
elementsZ2, Z4 etc. represent capacitors withZi = 1/pCi.

For microwave applications the realisation of a perfect high
pass filter is impossible, but a band pass design can be obtained
by a network transformation. A number of transformations are
available for this purpose where theLs andCs of a standard
high pass filter are replaced by more complex realisable
network elements. These include band-pass and transmission
line element periodic forms. The requirement that any such
transformation should respect the minimum phase requirement
of the whole network is a feature that is not commonly con-
sidered. Fortunately, a number of theorems can be employed
for this purpose. One such theorem [12] is as follows:

Theorem. If Zi(p) and Yi(p) = 1/Zi(p) represent realisable
passive impedance and admittance functions of the Laplace
variable p = jω and a two-port ladder network comprising
inductorsLi and capacitorsCi terminated byRL is minimum
reflection phase, then provided

p′(p) ≡ U(p)

V (p)
=

Yi(p)

Ci

=
Zi(p)

Li

for all i (18)

then the network comprising elementsZi(p) terminated by
RL is also minimum reflection phase. Here the functionp′(p)
is a positive function expressed by the polynomialsU(p) and
V (p) with no complex zeros in the right hand half plane. The
proof relies on expressing the input impedance of the network
Z(p) as a rational function with polynomials expressed as a
product of root factors. If,

Z(p′(p)) =
P (p′)

Q(p′)
(19)

for polynomialsP (p′(p)) and Q(p′(p)) sharing no common
root factors, thenZ(p′(p)) is minimum reflection phase if and
only if P (p′(p))− Z0Q(p′(p)) is Hurwitz stable. We have,

P (p′(p))− Z0Q(p′(p)) =

(

1

V (p)

)N N
∏

i=1

(U(p) + piV (p))

(20)
wherepi are the roots ofP (p)−Z0Q(p) prior to transforma-
tion andN is the number of such roots. Whenpi are real, then
pi are positive and hence sinceU(p) and V (p) are Hurwitz
stable for passive elements then so isU(p)+piV (p). Whenpi
are complex then they exist as complex conjugate pairs and we
consider the quadratic factors(U(p)+piV (p))(U(p)+p⋆i V (p))
which take the formU2(p)+βU(p)V (p)+γV 2(p) for β ≥ 0,
γ > 0. This polynomial is also Hurwitz stable. Because
the product in (20) comprises a product of Hurwitz stable
polynomials, the product is also Hurwitz stable, completing
the proof.

The Richards transformation provides a representation in terms
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of waveguide elements [13],p′(p) = W tanh(pT ) for arbi-
trary positive real constantsW andT . Note that we explicitly
introduce the scaling factorW with units of frequency to
ensure thatp′ andp have the same units. This transformation
replaces inductors by sections of shorted transmission line and
capacitors by sections of open-ended transmission line.

Since an open ended waveguide has input impedanceZin =

Z
(c)
0 / tanh(pT ) and a closed ended waveguide has input

impedanceZin = Z
(c)
0 tanh(pT ) for characteristic impedance

Z
(c)
0 it follows that each transmission line element has a

characteristic impedanceZ(c)
i given byZ(c)

i = 1/(WCi) for
the open ended sections andZ(c)

i = WLi for the shorted
sections. Each element must be of equal electrical length such
that if β represents the wavenumber at frequencyω in a guide
of length l, then βl = ωT . The constantT represents the
(1-way) propagation time and may be chosen arbitrarily to
scale the frequency range of the balun but it has no effect on
bandwidth. The scaling constantW (with units of frequency)
may be set so that the impedance of the shorted transmission
line and parallelLC combination match asω → 0 and
such that the position of the first pole matches. In this case,
W = 1/T and the reflection coefficient becomes a periodic
function of frequency with an infinite number of pass bands.
The Richards elements can in principal be implemented at
microwave frequencies, but the formalism ignores stray ca-
pacitances and inductances which are usually sufficiently large
that anLC band-pass approximation is equally as accurate.

Without the use of magnetic materials with relative per-
meability µr ≫ 1 it is difficult to achieve characteristic
impedances in a TEM line much greater than that of free
space,Z(fs)

0 ≈ 377 ohms, at microwave frequencies. Methods
to obtain high characteristic impedances include the use of
conductor strip widths or wire diameters less than a tiny
fraction of a millimetre, or the use of convoluted inductor-
like structures but in both cases the achievable characteristic
impedance is limited, especially if ohmic losses are small.

V. THE FANO-RHODES BAND PASS MATCHING NETWORK

Fano [10] considered a maximum bandwidth ladder network
for transfer of energy from a resistive source to a load consist-
ing of a capacitor and resistor in parallel. This design meets the
minimum phase requirement with a reflection coefficient that
is the ratio of two Hurwitz stable polynomials. Although this
is a low pass structure, and does not have the required shunt
inductive behaviour, it can be transformed to one that does
using appropriate filter transforms that maintain minimum
phase.

As far as we are aware, Fano was first to describe the
design of a Tchebychev ladder network meeting this minimum
phase requirement. More recently, explicit network parameters
have been derived for an arbitrarynth order filter of this
sort, for example as described in Rhodes [14]. Rhodes also
considers a number of other filters, based on normalised low-
pass prototypes, which exhibit the required Hurwitz stability in

the numerator polynomial of the impedance function. These in-
clude theequidistant linear phase polynomial, which includes
the Tchebychev polynomials as a special case, andarbitrary
phase polynomials, both of which may have application here.
However, these latter types are rather more complicated and
no explicit network parameter formulas are currently available.
For our purposes, all such singly loaded loss-less ladder
networks whose reflection coefficient is a rational functionof
the ratio of two Hurwitz polynomials will be termedFano-
Rhodes ladder networks.

Using standard filter transforms, it is possible to convert alow
pass filter into a dual form and transform either the originalor
its dual into a high pass or band pass filter. A property of the
transformation is that the bandwidth and shape of its frequency
characteristics is conserved (under suitable definitions)and
hence a structure that has optimal bandwidth in its original
form has an optimal bandwidth in its transformed form. The
basic transformations employed in filter theory are usually
designed to include at most one capacitor and one inductor
to each elementZi. This is not necessary, but we will not
seek to generalise here.

The matching network scheme hinges on making the first shunt
element of the (transformed) Fano-Rhodes network equal to
the transmission line shunt impedance, comprisingL and
any more realistic network representation of the ‘exterior’
conducting path of the balun that gives rise toL. In its
simplest form this is the inductorL and a parallel capacitance
C, suitable for a pass-band design. In what follows we take
the characteristic source impedance of the reverse network,
Z

(in)
0 = RL and the termination resistanceR = Z0 without

assumingRL = Z0. In this caseΓ should be replaced by
ρ1 in (2). Figure 5 shows the nature of the ladder network
required to compensate for the shunt impedance assuming a
high-pass (shunt inductor) or band-pass (shunt inductor and
capacitor) Fano-Rhodes network.Zin is the input impedance,
as illustrated.

Rhodes [14] analysis employs a description of the network
parameters in terms of series inductors and perfect inverters
for the loss-pass primitive forms. This raises a question on
the realisability of inverters. There are two issues here. Firstly,
although a single inverter cannot be perfectly realised using a
finite number of inductors and capacitors, there are standard
approximations which are valid over a limited frequency
band (e.g. see chapter 15 of [16]). If the bandwidth of the
inverter approximation is larger than the bandwidth of the
balun these methods can be employed. Secondly, it is relatively
straight forward to show that, subject to certain limitations
that are of no consequence here, a ladder network containing
inverters can be realised using inductors and capacitors with
an explicit relationship between the two equivalent network
representations.

The Fano-Rhodes Tchebychev (FRT) network is a general
nth order filter capable of meeting the optimal matching
requirements set out by Fano [10] where explicit formulae
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C
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reflection loss (dB)

reflection loss (dB)

limit of model validity

limit of model validity

Fig. 5. Fano networks appropriate to balun design.

are available for the component values. This is referred to as
the minimum phase S11 Tchebychev prototype in [14]. The
simpler minimum phase S11 Maximally Flat prototype may
be regarded as a special case. After suitable transformation
the FRT can be used as a prototype for the construction of
a matching network for the balun. To make our use of the
theory clear, we will consider the argument in various stages,
following the sequence of forms (a)-(c) illustrated in figure 6,
below.

Stage (a)

We first assume a canonical form in terms of series inductors
and inverters, as illustrated in the inverter form of the original
low-pass design, figure 6-a. Note that an inverter of character-
istic K is defined as a device for transforming between two
impedances,Z andZ ′ under the transformation,

Z =
K2

Z ′
(21)

The following material comes from [14] (section 2.7), mod-
ified to include a non-unity source impedanceZ0 and non-
unity cut-off frequencyω0 (following the scaling rules, section
2.12). For a Tchebychev filter of ordern, the transmission
coefficientS12 from the source impedanceZ0 into the load
impedanceR′ is assumed to be of the form,

|S12(jω)|2 =
A

1 + ǫ2T 2
n(ω/ω0)

(22)

where Tn is a Tchebychev polynomial of ordern in the
real frequency variableω. The coefficientsA and ǫ are real
numbers;ǫ may be of any value describing the ripple level
and out-of-band tail-off,A ≤ 1 describing the filter depth.
In this form, we explicitly include the cut-off frequencyω0

(in [14], ω is assumed dimensionless and frequency scaling is
performed after the formulation).

The subsidiary parametersη andξ are then defined by,

η = sinh

(

1

n
sinh−1 1

ǫ

)

(23)

ξ = sinh

(

1

n
sinh−1

√

1−A

ǫ

)

(24)

whereη > ξ > 0. WhenS11(p) is minimum phase it takes
the form,

S11(p) =
n
∏

r=1

(

p/ω0 + j cos[sin−1(jξ) + (2r − 1)π/2n]

p/ω0 + j cos[sin−1(jη) + (2r − 1)π/2n]

)

(25)
The load impedance may be shown [14] to be,

R′(η, ξ) = Z
(in)
0

η + ξ

η − ξ
(26)

If the other network parameters are the series inductorsL′

r (for
1 ≤ r ≤ n) and inverter parametersKr,r+1 (for 1 ≤ r ≤ n−1)
then [14],

L′

r =
2Z

(in)
0 sin[(2r − 1)π/(2n)]

ω0(η − ξ)
for 1 ≤ r ≤ n. (27)

and

Kr,r+1 =
Z

(in)
0

√

ξ2 + η2 − 2ηξ cos(rπ/n) + sin2(rπ/n)

η − ξ
(28)

for 1 ≤ r ≤ n− 1

The input impedance for the original low-pass inverter form
may be represented by the continued fraction,

Z
(a)
in = pL′

1+
K2

12

pL′

2 +
K2

23

pL′

3 + . . . +
K2

n−2,n−1

pL′

n−1 +
K2

n−1,n

pL′

n +R′

(29)

It may also be represented, for the LC form represented in
figure 6-a, as the continued fraction

Z
(a)
in = pL

(a)
1 +

1

pC
(a)
2 +

1

pL
(a)
3 + . . .+

1

pC
(a)
n−1+

1

pL
(a)
n +R(a)

(30)
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(c) (c) (c) (c)
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Fig. 6. The dual low-pass and band-pass forms of the FRT network

Comparison of these two forms shows that, forn odd,

L
(a)
1 = L′

1

C
(a)
2 =

L′

2

K2
12

L
(a)
3 =

K2
12L

′

3

K2
23

.

. (31)

C
(a)
n−1 =

L′

n−1

K2
n−2,n−1

(

L′

n−2

L
(a)
n−2

)

=
K2

n−3,n−2 . . .K
2
23

K2
n−2,n−1K

2
n−4,n−3 . . .K

2
12

L′

n−1

L(a)
n =

L′

n

K2
n−1,n

(

L′

n−1

C
(a)
n−1

)

=
K2

n−2,n−1K
2
n−4,n−3 . . .K

2
12

K2
n−1,nK

2
n−3,n−2 . . .K

2
23

L′

n

and R(a) =
R′

K2
n−1,n

(

L′

n−1

C
(a)
n−1

)

=
K2

n−2,n−1K
2
n−4,n−3 . . .K

2
12

K2
n−1,nK

2
n−3,n−2 . . .K

2
23

R′

where the number ofK2 terms is the same in numerator and
denominator for the inductorsL(a)

r (r = 1, 3, 5, ..., n) but one
less in the numerator for the capacitorsC

(a)
r (r = 2, 4, ..., n−

1).

Whenn is even,

L
(a)
1 = L′

1

C
(a)
2 =

L′

2

K2
12

L
(a)
3 =

K2
12L

′

3

K2
23

C
(a)
4 =

K2
23L

′

4

K2
12K

2
34

. (32)

.

L
(a)
n−1 =

K2
n−3,n−2K

2
n−5,n−4 . . .K

2
12

K2
n−2,n−1K

2
n−4,n−3 . . .K

2
23

L′

n−1

C(a)
n =

K2
n−2,n−1 . . .K

2
23

K2
n−1,nK

2
n−3,n−2 . . .K

2
12

L′

n

and
1

R(a)
=

K2
n−2,n−1 . . .K

2
23

K2
n−1,nK

2
n−3,n−2 . . .K

2
12

R′

Stage (b)

We now consider the dual form. We employ a general theorem
of reciprocal networks, as given by Bartlett [17]. This shows
that given any ladder network composed of series impedance
elementsSi and shunt impedance elementsTi, the dual
network composed of reciprocal shunt elements (reciprocal
with respect to the impedancek), k2/Si, and reciprocal series
elementsk2/Ti has an input impedance which is itself recip-
rocal to the original. Referring to figure 7,Za = k2/Zb. For

Z b =k /Z
2

a

S S S

T T T

1 2 n

1 2 n =R

k k k

k k k/T/T /T

/S /S /S

1 2 n

1 2 n

= k /R
22 2 2

2 2 2

Z a

Fig. 7. The relationship between dual forms of a ladder network (Bartlett’s
theorem)

our purposes, we assume the series elements with impedance
Si are inductors and the shunt elements with impedanceTi
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are capacitors. Referring to figure 6-b, we therefore define,

C
(b)
1 = L

(a)
1 /k2

L
(b)
2 = k2C

(a)
2

C
(b)
3 = L

(a)
3 /k2

. (33)

.

L
(b)
n−1 = k2C

(a)
n−1

C(b)
n = L(a)

n /k2

R(b) = k2/R(a)

(34)

for some as yet unspecified real impedancek. The input
impedance is then given by,

Z
(b)
in =

k2

Z
(a)
in

(35)

and the reflection coefficient of the dual form is given by,

S
(b)
11 =

k2 − Z
(in)
0 Z

(a)
in

k2 + Z
(in)
0 Z

(a)
in

(36)

We now express an important lemma. WritingZ(a)
in ≡ U/V

as a rational function with Hurwitz stable polynomialsU(p)
andV (p) in the Laplace transform variablep = jω, we may
rewriteS

(b)
11 as,

S
(b)
11 = −U − (k2/Z

(in)
0 )V

U + (k2/Z
(in)
0 )V

(37)

Since the reflection coefficient for the original network,S
(a)
11 =

(U − Z
(in)
0 V )/(U + Z

(in)
0 V ) is taken to be of minimum

phase (Hurwitz U/V form),S(b)
11 is of minimum phase if

k ≤ Z
(in)
0 . This follows from a stability theorem that ifU(p)

andV (p) are stable and ifU(p)−Z
(in)
0 V (p) is stable then so

is U(p)− αV (p) for 0 ≤ α ≤ Z
(in)
0 .

Stage (c)

The final transformation makes use of another standard net-
work transformation, used to transpose a low pass to a
band pass filter. The transformation in the Laplace transform
variable (see, for example, section 2.12 of [14]1) is,

p → α

(

p

ωc

+
ωc

p

)

(38)

where

ωc =
√
ω1ω2

α =
ω0

√
ω1ω2

ω2 − ω1
(39)

whereω1 andω2 are, respectively, the lower and upper cut-off
frequencies to the pass band andω0 is the cut-off frequency of
the original low-pass filter. Under this transformation, everyL

1Note that Rhodes assumes unit cut-off frequency for the original low-pass
filter.

in the original network becomes a seriesL andC, and every
C in the original network becomes a parallel shuntL andC.
Referring to figure 6-c, the new component values are given
by,

L
(c)
r =

αL
(b)
r

ωc

C
(c)
r =

1

αL
(b)
r ωc























for r even. Series components.

L
(c)
r =

1

αC
(b)
r ωc

C
(c)
r =

αC
(b)
r

ωc























for r odd. Shunt components.

R(c) = R(b)

(40)

VI. FRT BANDPASS EXAMPLE, N = 3

Here we consider the caseN = 3 which is of order suitable
for balun construction. The three impedance elementsZ1, Z2

andZ3 form the matching network. In this case, the auxiliary
parametersη andξ are, from (23) and (24),

η = sinh

(

1

3
sinh−1 1

ǫ

)

(41)

ξ = sinh

(

1

3
sinh−1

√

1−A

ǫ

)

(42)

K12 =
Z

(in)
0

√

ξ2 + η2 − ξη + 3/4

η − ξ
(43)

K23 =
Z

(in)
0

√

ξ2 + η2 + ξη + 3/4

η − ξ
(44)

Proceeding to stage (c), the component values are given by,

C
(c)
1 =

Z0

(η − ξ)(ω2 − ω1)k2

L
(c)
1 =

(η − ξ)(ω2 − ω1)k
2

ω1ω2Z0

C
(c)
2 =

(η − ξ)(ω2 − ω1)K
2
12

2ω1ω2Z0k2

L
(c)
2 =

2Z0k
2

(η − ξ)(ω2 − ω1)K2
12

C
(c)
3 =

Z0K
2
12

(η − ξ)(ω2 − ω1)k2K2
23

L
(c)
3 =

(η − ξ)(ω2 − ω1)k
2K2

23

ω1ω2K2
12Z0

R(c) =
k2K2

23(η − ξ)

Z0K2
12(η + ξ)

(45)
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By way of example, suppose we assumef1 = ω1/2π = 3.0
GHz,f2 = ω2/2π = 20.0 GHz,k = Zin

0 = 60 ohms,A = 0.9
and take values ofǫ = 0.01, 0.04, 0.16 and0.64. Note thatZin

0

represents the characteristic impedance of the balanced output
of the balun. Table I shows the equivalent circuit parameters
and numerically estimated (from the reflection coefficient)
values ofBp integrated over the range zero to50 GHz. Note
thatR represents the required characteristic impedance of the
unbalanced input to the balun.

The reflection coefficient, as a function of frequency, is plotted
in figure 8. As we expect, the performance improves as the
value of L(c)

1 increases, which occurs as the parameterǫ is
made smaller. In design of a balun, the inductorL = L

(c)
1

shunting the balanced output loadZ(in)
0 = RL is likely to

be a given so the remaining parameters should be adjusted to
match.

ǫ equivalent circuit values Bp

C
(c)
1 L

(c)
1 C

(c)
2 L

(c)
2 C

(c)
3 L

(c)
3 R(c)

/pF /nH /pF /nH /pF /nH /Ω
0.01 0.0718 5.884 1.272 0.332 0.0475 8.895 56.32 1.000
0.04 0.1217 3.468 0.914 0.462 0.0831 5.081 52.86 1.000
0.16 0.2217 1.904 0.789 0.535 0.169 2.501 46.53 1.000
0.64 0.5338 0.791 1.144 0.369 0.476 0.887 35.77 1.000

Table I
EQUIVALENT CIRCUIT VALUES FOR BAND-PASS MINIMUM PHASE
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Fig. 8. Reflection coefficient under variation ofǫ in then = 3 transformed
Fano-Rhodes Tchebychev filter (0-40 GHz).

VII. A PRACTICAL BALUN EXAMPLE

Although the pass-band model can be realised with discrete
components at low frequencies it can serve only as a design
aid at microwave frequencies where the demands of practical
implementation make the model almost impossible to achieve.
In this section, CST [18] is used to design a microstrip to mod-
ified slot-line Marchand balan corresponding approximately to
an N = 3 band pass ladder network. This is not intended to
achieveBp = 1 (which may be impossible in practice) but is

nevertheless intended to show good performance. The design
is intended to provide operation between2.0 GHz and18.0
GHz which is a respectable bandwidth for a Marchand-style
balun. TheN = 3 design includes an additional shunt com-
ponent over the standard Marchand form. The characteristic
impedance of the unbalanced microstrip is approximately50
ohms whilst that of the modified slotline is approximately60
ohms. The use of a floating strip on the top side of the substrate
is employed to achieve this without the width of the slotline
being unacceptably small. The slotline is0.2 mm wide with
0.8 mm wide microstrip. The substrate is taken to have relative
permittivity ǫr = 3.38, assumed lossless. Substrate thickness
is 0.35 mm. All conducting track is assumed to be0.017 mm
thick perfect conductor.

Referring to figure 2, theN = 3 pass-band model assumes
an inductor L = L1 and three impedance elementsZ1,
Z2 and Z3 where Z1 = 1/jωC1 is purely capacitive,Z2

represents the open-circuit stub by a series inductor and
capacitorZ2 = jωL2 + 1/jωC2 and Z3 a parallel inductor
and capacitor1/Z3 = jωC3 + 1/jωL3. Z3 is represented by
a thin conductor of width0.15 mm and length5.1 mm with
the ground plane beneath it removed. The end of the line is
connected by a conducting via to the ground plane beneath.
This high impedance line is similar to co-planar waveguide
without ground plane.L1 is defined by the cavity comprising a
conducting shield and gap in the ground plane at the end of the
stripline. In construction, the shields should be bolted together
through the substrate, ensuring good electrical contact with the
ground plane. The shield serves to reduce radiation losses and
well define the characteristics of the balun when the circuit
board is in proximity to other structure.C1 is generated as a
result of the gap-plus-screen and the stray capacitances near
the feeding elements. The design is shown in figures 9 to 11,
where the more important dimensions are illustrated. Figures
12 and 13 show the CST predicted return and transmission
loss. Note that all losses are radiative since the model assumes
a lossless dielectric and lossless (perfect) conductors.

The shunt inductanceL1 may be computed by examination of
the low frequency phase response of the reflection coefficient
of the screened gap region. The screened gap behaves as a
waveguide below cutoff so its inductance is controlled more
by the screen dimensions than the length of the gap. A separate
CST analysis is required, with the analysed structure shown
in figure 14. Note the position of the port; the inductance is
defined at the point where the microstrip excites the slotline,
just in front of the screen. In this model the microstrip tracks
and stubs have been removed, leaving only the modified slot-
line excitation of the cavity. The magnitude of the reflection
coefficient is close to unity, with predicted reflection phase
shown in figure 15. The inductance,L, is given by,

dΦ

dω
= −2L

Z0
asω → 0 (46)

whereZ0 = 60 Ohms. The results indicate a phase gradient
of −8.2 × 10−8 degrees/Hz which impliesL1 ≈ 5.6 nH.
Numerical estimation ofIbw between 0.5 GHz (below which
the reflection coefficient is negligibly small) and20 GHz
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(above which no data for this model is available) indicates
Bp ≈ 0.50, assuming that the reflection coefficient is small
above20 GHz. The capacitanceC1 can be estimated by the
frequencyωz at which the reflection phase is zero at which
pointωz = 1/

√
L1C1. This occurs at approximately7.6 GHz,

leading to a value ofC1 ≈ 0.078 pF andZc ≈ 170 Ohms
using (17).

It is instructive to view the kind of values predicted by the
FRT equivalent circuit model shown previously, since the
performance of the real balun design is not as good. Using
(17) the tabulated values ofL1 andC1 define a characteristic
impedanceZc ≈ 180 Ohms, probably close enough to the
above value not to be an issue. The tabulatedL2 and C2

define an open circuit transmission line with characteristic
impedanceZc ≈ 10 Ohms and the tabulatedL3 andC3 define
a shorted line with characteristic impedanceZc ≈ 270 Ohms.
The electrical length is constant for all elementsZ1, Z2 and
Z3 with estimatedd = 9.7 mm. On the other hand the real
balun example features an open circuit stub approximated by
2.7 mm wide microstrip which has a characteristic impedance
of about 20 ohms. Similarly, the via-terminated0.15 mm
thin line has a characteristic impedance of about170 Ohms
(evaluated by CST, but very similar to coplanar waveguide
with no ground plane). Unfortunately, respectively lowering
and raising these characteristic impedances is not feasible on
this substrate material.

VIII. C ONCLUSIONS

The conditions for construction of a bandwidth-optimal
perfect balan are given in terms of a minimum reflection
phase band pass filter equivalent circuit. Other minimum
reflection phase networks are also possible, but have not
been considered here. The representation is applicable to any
perfect balan for which the balanced output port is inductive
in the low frequency limit. In reality, for microwave ultra
wide band applications, it is likely thatBp = 1 designs are
not possible, but this sets the “gold standard” for reference
purposes. Practical realisations have reduced performance due
to a number of reasons, but chiefly due to the difficulty
of achieving elements with both sufficiently high and (to a
lesser extent) sufficiently low characteristic impedancesand
the difficulty of connecting them together without introducing
unwanted parasitics. A practical 2-18 GHz balun is simulated
using CST, for comparison purposes, with an estimated value
of Bp = 0.5.

In addition to the requirement to come as close as possible to
achieving minimum reflection phase (looking into the balanced
port towards the unbalanced port through an all-pass filter),
it is also advantageous to employ a balanced output port
whose characteristic impedance is as low as possible and
transformed using an impedance transformer to the required
load impedance. This will also be set by practical constraints,
e.g. track widths and mechanical tolerances. Finally we would
remark that for this application, as for many others, there exists
the general desire to obtain lossless high relative permeability
materials at microwave frequencies. These could be used to

Fig. 9. Perspective view (grey represents conductor over substrate)

VIA

0.8 mm

0.8 mm
5.1 mm

0.15 mm

2.0 mm

0.95 mm

3.2 mm

2.7 mm

0.3 mm

Fig. 10. Top plan view (blue represents conductor over substrate)

4.0 mm

6.0 mm

2.0 mm

0.2 mm

4.7 mm

VIA

Fig. 11. Plan view showing regions of conductor removed from ground plane

realise large inductances without large capacitance, or equiv-
alently to achieve high characteristic impedance transmission
lines. Unfortunately, this still remains something of a ‘holy
grail’.

IX. A PPENDIX 1. THE REQUIREMENTS FOR OPTIMAL

INTEGRATED BANDWIDTH

Previously three necessary and sufficient conditions were
specified in order to ensure a maximum integrated bandwidth
defined byBp = 1. The Bode-Fano bandwidth inequalities
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Fig. 14. CST model for analysis of the shunt element (screened gap).
Excitation port shown by red rectangle about0.5 mm from screen.
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Fig. 15. Predicted reflection phase of theL1 component (0-20 GHz)

are well known, but not so the conditions for equality which
come from Fano’s original analysis. Referring to figure 1 and
to [9], the logarithm of the inverse of the backward reflection
coefficientρ1 may be written as,

loge(1/ρ1) = −1 +A0
1p+A0

3p
3 + . . . (47)

written as a Taylor expansion near zero frequency, wherep =
jω. Of importance is the coefficientA1

0 which is independent
of the networkN ′′ assuming thatN ′′ does not have a shunt
inductor at its output port (this is an example of degeneracy
which Fano considers in greater generality than required here).
If it does, then it should be lumped in withL. If there is no
such degeneracy,

A0
1 =

∑

i

p−1
0i −

∑

i

p−1
∞i (48)

where p0i are the zeros ofρ1 and p∞i are the poles ofρ1
which are independent of the networkN ′′. Fano shows that,
∫

∞

0

1

ω2
loge

(

1

|ρ1(ω)|

)

dω =
π

2
F 0
1 =

π

2

(

A0
1 − 2

∑

i

p−1
ri

)

(49)
wherepri are the real parts of any zeros ofρ1 in the right hand
half plane. The integral is positive andA0

1 depends only on
the networkN ′ inductor so the sum overpri always reduces
the value of the integral. Furthermore, eachpri is positive so
we require there to be no zeros in the right hand half plane.
This is a statement of the minimum phase definition of the
reflection coefficientρ1.

Consequently, the integral attains its maximum value provided
N ′′ contains no shunt inductance at its output and provided
ρ1 is minimum phase. In this case the integral takes the value
πA0

1/2 which is dependent only on the value ofL which is
the only element ofN ′. In the limit that ω → 0, only the
inductorL contributes to the reflection coefficientρ1,

ρ1 → pL−RL

pL+RL

(50)

which has one pole and one zero,p∞1 = −RL/L andp01 =
RL/L so thatA0

1 = 2L/RL. Thus we obtain,
∫

∞

0

1

ω2
loge

(

1

|ρ1(ω)|

)

dω =
πL

RL

(51)

If the networkN ′′ is lossless then|Γ| = |ρ1| and we obtain
equality in the Bode-Fano result.
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